All Numbers Are Equal ; |8 E/ [( K/ A1 K4 I$ I
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then & y W7 c' V5 U$ K1 X! C) f3 e3 F ! I; d! j9 `6 ]7 w* e" D/ Ka + b = t 8 P% B: _# }% o(a + b)(a - b) = t(a - b)5 i/ H! Q- ]- x0 U" p, B
a^2 - b^2 = ta - tb; R: e' F) @ M: L& l2 c4 s8 n
a^2 - ta = b^2 - tb: O- [3 \# @+ w6 ]) T3 F. O
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/40 B8 }( m6 {+ a5 m
(a - t/2)^2 = (b - t/2)^2 . Q' Z# R4 e3 p5 Y. t& }a - t/2 = b - t/2. E, W. D! R; f; O' _3 O2 J; ?
a = b 5 F' B l! R3 W+ [" c ; D' x8 ^/ v/ b) Y6 y9 x+ BSo all numbers are the same, and math is pointless.