All Numbers Are Equal 2 V' C1 X9 V% }$ q4 ?. O
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then : \1 n% |- e8 m" h, ~
" \! Q# g; d' C: B9 j( P5 Y
a + b = t7 `# P8 E1 o5 a6 Q
(a + b)(a - b) = t(a - b) $ C1 b# r! v, a. _, [- ]) ]a^2 - b^2 = ta - tb( J$ Z& e2 I3 u( R. u% p
a^2 - ta = b^2 - tb 0 |8 p4 j. J& }a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4$ L' T+ R9 w3 Q2 l7 i
(a - t/2)^2 = (b - t/2)^2 # I9 r& a& S* G' s" _4 M7 oa - t/2 = b - t/2 & ]4 l2 R( m& A# W: w% r+ Ha = b 9 k8 u# _9 I) n. o' z# Y. w" Z6 n7 w# z& A5 ?
So all numbers are the same, and math is pointless.