All Numbers Are Equal 3 r2 p' W+ r- C/ L) |
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 8 J2 w4 x8 e9 Q% @) R8 [0 j( { # G; ^) I) g" H0 p$ y& Z9 s* d" [a + b = t- s d# r- N# w* A
(a + b)(a - b) = t(a - b) - | o) c7 g: g6 G7 V; n7 z9 D3 ka^2 - b^2 = ta - tb8 H8 o7 W" A# a; E2 K4 Q9 X
a^2 - ta = b^2 - tb " z$ U8 b7 @0 N9 B: sa^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4$ G% l9 H% N1 I
(a - t/2)^2 = (b - t/2)^2, t3 e8 Q/ x; M2 U% i: T
a - t/2 = b - t/2' C$ v" c7 T! y2 A8 u6 X) X9 B
a = b ) i; _7 I, e( q5 V/ M
& j6 o7 q4 q% V7 ?- R$ Y4 b6 ^. f' Z
So all numbers are the same, and math is pointless.