All Numbers Are Equal 5 ?! J% o0 B& P0 k, kTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then 2 M4 l! y' P) a0 [; }1 X
- N6 I! a( _" v6 e- k
a + b = t b$ E- ^ d8 x! h( A# g$ p
(a + b)(a - b) = t(a - b)8 C( @0 F9 a* [: T3 b) |: b
a^2 - b^2 = ta - tb6 c& ^' @- Y7 [5 d: o; B5 M
a^2 - ta = b^2 - tb & L" L8 b" A X! y6 d# Na^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4 r0 W3 j0 T* Q9 X, \6 u(a - t/2)^2 = (b - t/2)^2) M5 g! r* g/ `2 ~+ j2 L
a - t/2 = b - t/2 W( Z5 v5 I: U# `5 K6 v
a = b & b* I5 r9 B4 I- E. [. A- q" r9 `+ j3 j- C; u5 f( W
So all numbers are the same, and math is pointless.