All Numbers Are Equal : k( K3 v+ I/ s9 p# _1 O' H y0 bTheorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then % {. k& b2 G4 J. x2 j8 v 3 q- ^6 ^ J% J2 Aa + b = t% r! f1 l) h" ]
(a + b)(a - b) = t(a - b) * K5 T, G# u6 ma^2 - b^2 = ta - tb 2 k9 w* e" U4 e" U4 ^; Pa^2 - ta = b^2 - tb" `, m7 Q2 r3 l7 k
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/47 u5 w9 E- @( w1 `
(a - t/2)^2 = (b - t/2)^2& z5 J( ?- w8 Q- R$ I
a - t/2 = b - t/2 2 d; X& G& {0 e7 X% w- K' v, ^a = b # d6 S9 n6 n5 c! h7 x' A: c- p+ [
% t8 J' [6 P6 X( S. J$ T$ z7 Q
So all numbers are the same, and math is pointless.