 鲜花( 0)  鸡蛋( 0)
|
All Numbers Are Equal ) t+ c* E7 \- f5 J
Theorem: All numbers are equal. Proof: Choose arbitrary a and b, and let t = a + b. Then ; b" e0 u5 M4 c3 H
- y3 y" \3 q+ q; `' @. M2 m2 U
a + b = t% O5 p# `, ~2 ]% F1 O+ X
(a + b)(a - b) = t(a - b)9 x2 t# c4 U0 ~9 F, v; y7 |1 b2 ]4 M
a^2 - b^2 = ta - tb z$ r9 i4 i" z. H
a^2 - ta = b^2 - tb+ A8 R3 e5 _- R* _
a^2 - ta + (t^2)/4 = b^2 - tb + (t^2)/4
; o# `0 y& j C: G( D# o9 k(a - t/2)^2 = (b - t/2)^2( M8 [8 F1 E, ], @( @ t
a - t/2 = b - t/2
" y/ _! O( l$ E& H% p3 _a = b
. \+ w: ~, s$ n
! r( B6 c2 J: U. h# V6 CSo all numbers are the same, and math is pointless. |
|