 鲜花( 0)  鸡蛋( 0)
|
Suppose Intr is annually compounded S- y4 ~/ E% o2 }$ ]$ [- a
Month 0 Mon. 8 Mon. 12% O, `+ L0 x# V) J
Cash Principal X -750 -950 G6 t! R& w, E. q. `
Cash Intr (Should Pay) -X*9.5%*8/12 -(X-750)*9.5%*4/12
& k' `; o9 j2 P# H- oPV at mon 0 X -[750+X*9.5%*8/12] -[950+(X-750)*9.5%*4/12]
: F. m- L( [$ f# A9 }$ P /(1+7.75%*8/12) /(1+7.75%*12/12) g( I; d0 M! T3 g' A) D% X
' h9 m- s/ m5 j9 Y! q' Y
these 3 should add up to 0, i.e. NPV at month 0 is 0.( G$ E! k( L( z7 s% A- e3 H3 W
5 @: i* g7 R0 R* y3 T- j
Conclusion X = 1729.8 ) q* z2 {- A+ p4 m
7 Q( b0 r3 _* e
So, Initial borrowing was 1730 *(1+7.5%) 1859.5 approx. $1,860 , d) o) S; ?2 E
|
|