 鲜花( 19)  鸡蛋( 0)
|
Solution:
$ g6 x" K0 T0 ], e( f4 `0 k, E5 \* F. I# D5 c& T
From: d{(a+bx)*C(x)}/dx =-k C(x) + s! d# N. S) l$ L
so:& B/ x3 Z. F5 n6 p4 V- @; y4 x
$ k6 }+ S7 ]2 w; lbC(x) + (a+bx) dC(x)/dx = -kC(x) +s
3 d/ G3 O3 k+ u) \" _i.e.1 W2 {1 p! P) ?: l
% ^8 Y7 \3 R5 k1 Q$ L6 I9 w# V(a+bx) dC(x)/dx = -(k+b)C(x) +s
3 U" A8 j: A! m% R( f, M8 f4 s8 f8 ]1 `# x
/ g' }) b7 ?6 \' C
introduce a tranform: KC(x)+s =Y(x), where K=-(k+b)
: O- b% [8 k4 W: a% S" m7 ^which means: KdC(x)/dx = dY(x)/dx or dC(x)/dx = (1/K)dY/dx
$ Y& g, u0 ?9 ^+ S7 q% D+ btherefore:2 Y5 _& Z# K; Z, d& S* Y% {. K
4 g- Z" M, Q& n
{(a+bx)/K} dY(x)/dx=Y(x)
" A, b( C8 i y" r% N, J% Y8 Q* o! P2 R5 @( M
from here, we can get:
% [' H5 k/ A; F
c; ^! p& S! w" wdY(x)/Y(x) = [K/(a+bx)]dx i.e. dY(x)/Y(x) = K/b {(a+bx)}d(a+bx)$ ]" A; N3 Q- T8 O1 u
( H% j# Z+ J$ M
so that: ln Y(x) =( K/b) ln(a+bx)+ B: \. {/ n2 K- h1 i0 j' p
- W5 [; X8 G& z0 _$ M$ k
this means: Y(x) = (a+bx)^(K/b)
2 s9 Q0 o+ T7 ?by using early transform, we can have:, H4 R- V( ]6 `8 w. ^& r& w% `6 k+ A
$ u* L% _- m# J# f* ~+ L' f
-(k+b)C(x)+s = (a+bx)^(k/b+1)
" j) u5 l' l$ P8 l
, w4 G8 w) i5 C( Bfinally:
% t* v% q# G& w& @% w' F/ W/ t6 _$ d. M7 N9 Z
C(x)= -1/(k+b)*{[(a+bx)^(k/b+1)] - s) |
|